Protecting the Biomass Process from Fires and Explosions -

Protecting the biomass process from fires and explosions

How to keep from blowing up and burning down your wood pelleting operation.

“You know you are making fuel, right?”

This is a question I often found myself asking as new wood pellet and biomass plants started
sprouting up all over the Midwest, Northeastern States, and Canada, but especially here in the Southeast United States. And I didn’t say this to be rude, but to point out potential combustible dust and ignition issues.

We have been making wood flour in North America for decades in the forest products, wood
products, secondary wood products, and especially in the MDF Medium Density Fiberboard and other related industries. Yet there seemed to be little technology transfer. Especially in fire and explosion prevention and protection.

Every engineering firm and large equipment manufacturer seemed to think they could build a wood
pellet plant better than the last. So, naturally many of the designs are different. Some are efficient, some not so much. Some are built with the proper engineering controls designed in, for others fire and
explosion protection seemed to be an afterthought. My job is to help you
prevent these fires and explosions. This is what keeps me up at night.

The Problem

In my job, I get the opportunity and privilege of making site visits to many of these wood pellet operations, as well as many other various types of combustible dust processes. Often, there is a disconnect from safety theory to actual practice. I go through many variations of safety orientation at
these plants, and then will often be walking through a plant and see posters that say “safety first”, all the while walking around on layers of combustible dust!

What if I told you combustible dust could be just as flammable or explosive as gasoline? Or, if I told you wood dust bin explosions are just as powerful as grain elevator explosions? Would that change how you view combustible wood or biomass dust?

There are established and reputable conveyor companies who dismiss the idea of building a conveyor
that is dust tight. However, if a plant had a combustible gas leak they would not continue to operate. Instead, they would shut down and fix the leak prior to starting back up. Or if they had a fuel, gasoline or other flammable liquids spill, they understand that their first responsibility would be to evacuate the area, fix the problem and clean up the mess.

Yet, when it comes to combustible dust, we seem to be blind to the potential hazard. Because we work around it every day there tends to develop over time a level of complacency. So, training and housekeeping become critical to preventing fires, explosions and catastrophic secondary explosions.

Complacency kills

Another thing that makes me cringe is hearing someone say, “that’s the way we have always done it”,
or “we have been running this way for years”, or “fires are just part of the process”. This is complacency, lack of education to the hazard, and really a lack of respect for the danger of combustible dust. Plants change. Machinery wears over time, products change, specifications
change. Change management is critical to stay on top of safety. So is constant improvement and training.

Combustible dust layers on equipment and machinery, walls, floors, on the rafters, cable trays, conduit, and piping are an indication of this disconnect, complacency, and of a potential combustible dust incident. Many times after touring plants with layers of combustible dust around the plant I find they have indeed had previous fires or explosions. Understand, if you are having fires and explosions, no matter how minor, they are potential precursors to a bigger event. You may be witnessing leading indicators of future problems.

A deflagration is simply a fast moving fire. And a combustible dust fire is simply a failed
explosion – you just haven’t gotten the recipe right, yet! 

Any time you move or manipulate a combustible product you are creating friction and heat as
well as combustible dust, and therefore have a potential for fires and explosions.

Fire Triangle/Explosion Pentagon in the Biomass Process

Fire Triangle

There are three main areas of concern for creating fires in the biomass process – dryers, hammer
mills, and pelletizers. Conveyors and other moving machinery are also a secondary concern for creating fires. These processes create friction and heat, which is one leg of the Fire Triangle, along with oxygen and fuel. So, you inherently have all the ingredients for a fire in your biomass process.
Dust Explosion Pentagon

If your dust is in an enclosure that contains a dust cloud such as a bin or dust collector, you not only have all the ingredients for a fire but have all of the requirements for an explosion. Having combustible dust in suspension in a confined area or vessel are the last sides of the dust explosion pentagon. If you are storing wood dust or pellets in enclosures, and/or you have dust collectors, you have all the ingredients necessary for an explosion.

Ignition and Prevention

We see heat, friction, and mechanical sparks as the cause of many of these fires and explosions.
According to the 2016 NFPA report “Fires in Industrial or Manufacturing Properties”:
  • U.S. fire departments responded to an estimated average of 37,000 fires at industrial or manufacturing properties each year, with annual losses from these fires estimated at 18 civilian deaths, 279 civilian injuries, and $1 billion in direct property damage.
  • Structure fires accounted for 20% of the fires, but 47% of civilian deaths, 82% of civilian injuries, and 69% of direct property damage.
  • Heating equipment (14% of total) and shop tools and industrial equipment (also 14% of total) were the leading causes of structure fires in industrial or manufacturing facilities.
  • A mechanical failure or malfunction was a factor contributing to the ignition of one in four structure fires (24%) in industrial or manufacturing properties, accounting for 23% of civilian injuries and 21% of direct property damage.
The controlling document for protecting wood biomass and wood pellet plants and processes is the NFPA 664 Standard for the Prevention of Fires and Explosions in Wood Processing and Wood Working Facilities.

For agricultural based biomass, see NFPA 61 Standard for the Prevention of Fires and Dust Explosions in Agricultural and Food Processing Facilities. NFPA 664 requires a Dust Hazard Analysis (DHA), to identify and mitigate all potential combustible dust and ignition hazards.

The primary areas of concern for explosions are enclosed vessels such as bins and hoppers,
dust collectors and storage silos, and secondarily, enclosed conveyors such as bucket elevators. To protect these processes and equipment facilities use a hierarchy of controls.

The Hierarchy of Controls

The hierarchy of controls includes Elimination, Substitution, Engineering Controls, Administrative
Controls, and Personal Protective Equipment (PPE). The last three of these will be discussed further here.
The Hierarchy of Controls

Personal Protective Equipment

PPE, personal protective equipment, and gear are the easiest to apply to keep personnel safe. Most of us know that when operating in areas where there are potential fire and explosion hazards, proper PPE must be worn. For example, safety glasses, hard hat, hearing protection, gloves and steel toed boots are the most common. When working around processes where there is potential for combustible dust fires and explosions, you should also add FRC’s, fire resistant clothing. While this article focuses on combustible dust, this also applies to processes with flammable gasses, other flammable products, and hybrid mixtures.

Administrative Controls

Administrative controls such as housekeeping, hazard communication and management of change
(MOC) are a primary level of prevention. For example, changing from softwoods to hardwoods, or adding a dryer to the process, necessitates hazard analysis, hazard communication, and management of change.

Engineering Controls

Engineering controls come in a variety of shapes and sizes. Several specific areas relevant to combustible dust are discussed here. Area Classification for electrical controls; separation, isolation and segregation of dangerous processes from each other; and layered protection systems including fire prevention, and fire and explosion protection, are the main engineering controls discussed in this article.

Area Classification

Two Documents are used for the Classification of Combustible Dust and Hazardous Locations:
NFPA 499 Recommended Practices for the Classification of Combustible Dusts and Hazardous
Locations for Electrical Installations in Chemical Process Areas
, and
NFPA 70, Article 500 of the National Electrical Code (NEC).

Class/Division Hazardous Location

Hazardous locations are described as locations where electrical equipment might present an ignition hazard. Class II Hazards are locations where combustible or conductive dusts present (or may be present) in quantities sufficient to produce explosive or ignitable mixtures.

Division refers to the probability of hazardous materials and mixtures.

Division 1 has a high probability of producing an explosive or ignitable mixture due to it being present continuously, intermittently, or periodically from the equipment itself under normal operating conditions. Electrical equipment in these areas must meet the criteria for explosion proof rating.

Division 2 has a low probability of producing an explosive or ignitable mixture and is present only
during abnormal conditions for a short period of time – such as a container failure or system breakdown. See NFPA 652 Standard on the Fundamentals of Combustible Dust requirement for a DHA Dust Hazard Analysis. NFPA 652 requires all such facilities to perform a dust hazard analysis and risk assessment for each process that handles or creates combustible dust.

Engineering Principles

An engineering principle outlined in NFPA 664 is to Isolate, segregate and separate the various
hazardous parts of the process from each other. As an example, there is one design of hammer mill process that uses a plenum in between the mill and the dust collector, thus creating a bomb. It is preferable to have a choke in between like a screw conveyor or airlock, and to remove the dust collector to a remote location, outside the building, thus isolating a potential explosion or deflagration.

Another principle of design found in NFPA 664 is layered protection systems for fire prevention,
fire protection, and explosion protection. NFPA 664 Chapter 8 applies to processes and systems such as mechanical conveyors, pneumatic conveyors, classifying, and dust collection systems. Conveyors and ducts with a fire hazard are required to have fire prevention and/or fire protection.

Fire prevention is typically spark detection. Spark detection and extinguishing systems are a primary tool to prevent sparks from propagating into fires by detecting and suppressing sparks or embers in the incipient stage. Spark detection systems are typically applied to mechanical conveyors, pneumatic conveyors, and dust collection systems.

Fire protection is typical deluge and sprinkler systems. We may also utilize other types of hazard monitoring equipment such as bearing temperature, heat detection, spark, ember, flame, smoke, CO detection, and emissions monitoring, as well as other types of suppression, control and isolation
devices. Interlocking machinery, conveyors, fire dumps, and proper sequencing of shutdowns are also critical engineering controls.

Explosion protection includes explosion venting or suppression as well as chemical or mechanical isolation to control and prevent a deflagration from transferring down or upstream, thus preventing catastrophic secondary explosions.

Vessels and Venting

Vessels and dust collectors with a deflagration hazard are required to have explosion protection
and isolation. Mechanical or chemical isolation of these vessels and dust collectors is also required. See NFPA 68 Standard on Explosion Protection by Deflagration Venting, and NFPA 69 Standard on Explosion Prevention Systems.

Explosion vents have to be engineered based on the explosive characteristics of the dust, thus dust
testing is required. Venting needs to vent to a remote area away from buildings, machinery, and people. Blast radius areas should be defined. Bins inside the building can be vented outside provided the distance to the exterior wall is short enough. Alternately, indoor explosion vents, also called “flameless venting” can be utilized.

These flameless vents use a mechanical or chemical flame barrier to suppress the flame front
but still emit a pressure wave. Where explosion venting cannot be used, chemical explosion protection and isolation must be used. Explosion protection systems consist of an optical and or
pressure sensor, a control panel and chemical canisters strategically located on the vessel and connected ducting.


After implementing the above, you have now created layers of protection based on the hierarchy
of engineering controls, best practices, and applicable national codes and standards. You should also consult your insurance company as well as local codes and authorities having jurisdiction (AHJs).

So there you have it. A brief overview of how to protect your wood pellet and biomass operation
from fires and explosions. With proper analysis, design, engineering and administrative controls, training, and housekeeping, your plant can be made safe.

With these guidelines, you can reduce the probability of risk, as well as the severity of consequences, maintaining safety and business continuity as well as a safe environment for employees and stakeholders, and safeguarding your reputation in the industry.


Leave any questions in the comment box at the bottom of the page or reach out to Jeff directly at to connect.

Free Download

Download a free copy of Jeff’s book (172 Pages, $17.97 on Amazon) using the link here: “The Ultimate Guide to Fire and Explosion Prevention – How to Keep your Plant from Blowing Up and Burning Down

Reference Codes and Regulations

  • The International Fire Code (IFC)
  • The International Building Code (IBC)
  • Local building codes
  • National Fire Protection Association (NFPA), particularly the following codes:

    • NFPA 68, Standard on Explosion Protection by Venting
    • NFPA 69, Standard on Explosion Prevention Systems
    • NFPA 70, National Electrical Code, (particularly the sections on area classifications)
    • NFPA 77, Standard on Static Electricity
    • NFPA 499, Recommended Practice for the Classification of Combustible
      Dusts and of Hazardous Locations for Electrical Installations
    • NFPA 654, Standard for the Prevention of Fire and Dust Explosions
      from the Manufacturing, Processing and Handling of Combustible
      Particulate Solids
    • NFPA 652, Standard on the Fundamentals of Combustible Dust
    • NFPA 664, Standard for the Prevention of Fire and Explosions in Wood Processing and Woodworking Facilities

Other Resources

Insurers such as FM Global have their own requirements. See the following FM Global Property Loss Prevention Data Sheets:
  • FM 7-10, Wood Processing and Woodworking Facilities
  • FM 7-11, Belt Conveyors
  • FM 7-17, Explosion Protection Systems
  • FM 7-73, Dust Collectors and Collection Systems
  • FM 7-76, Prevention and Mitigation of Combustible Dust Explosions and Fire
  • FM 7-78 Industrial Exhaust Systems
  • FM 8-27, Storage of Wood Chips 

Written by: Jeff Nichols
Published on: August 30, 2017


Popular posts from this blog

The Fire Triangle, Fire Tetrahedron and Dust Explosion Pentagon

Functional Safety Audit vs. Functional Safety Assessment

Are Spices Flammable?